102 research outputs found

    Integrating species traits into species pools

    Get PDF
    Despite decades of research on the species‐pool concept and the recent explosion of interest in trait‐based frameworks in ecology and biogeography, surprisingly little is known about how spatial and temporal changes in species‐pool functional diversity (SPFD) influence biodiversity and the processes underlying community assembly. Current trait‐based frameworks focus primarily on community assembly from a static regional species pool, without considering how spatial or temporal variation in SPFD alters the relative importance of deterministic and stochastic assembly processes. Likewise, species‐pool concepts primarily focus on how the number of species in the species pool influences local biodiversity. However, species pools with similar richness can vary substantially in functional‐trait diversity, which can strongly influence community assembly and biodiversity responses to environmental change. Here, we integrate recent advances in community ecology, trait‐based ecology, and biogeography to provide a more comprehensive framework that explicitly considers how variation in SPFD, among regions and within regions through time, influences the relative importance of community assembly processes and patterns of biodiversity. First, we provide a brief overview of the primary ecological and evolutionary processes that create differences in SPFD among regions and within regions through time. We then illustrate how SPFD may influence fundamental processes of local community assembly (dispersal, ecological drift, niche selection). Higher SPFD may increase the relative importance of deterministic community assembly when greater functional diversity in the species pool increases niche selection across environmental gradients. In contrast, lower SPFD may increase the relative importance of stochastic community assembly when high functional redundancy in the species pool increases the influence of dispersal history or ecological drift. Next, we outline experimental and observational approaches for testing the influence of SPFD on assembly processes and biodiversity. Finally, we highlight applications of this framework for restoration and conservation. This species‐pool functional diversity framework has the potential to advance our understanding of how local‐ and regional‐scale processes jointly influence patterns of biodiversity across biogeographic regions, changes in biodiversity within regions over time, and restoration outcomes and conservation efforts in ecosystems altered by environmental change

    When does intraspecific trait variation contribute to functional beta-diversity?

    Get PDF
    Summary Intraspecific trait variation (ITV) is hypothesized to play an important role in community assembly and the maintenance of biodiversity. However, fundamental gaps remain in our understanding of how ITV contributes to mechanisms that create spatial variation in the functional-trait composition of communities (functional Β-diversity). Importantly, ITV may influence the perceived importance of environmental filtering across spatial scales. We examined how ITV contributes to functional Β-diversity and environmental filtering in woody plant communities in a temperate forest in the Ozark ecoregion, Missouri, USA. To test the hypothesis that ITV contributes to changes in the perceived importance of environmental filtering across scales, we compared patterns of functional Β-diversity across soil-resource and topographic gradients at three spatial grains and three spatial extents. To quantify the contribution of ITV to functional Β-diversity, we compared patterns that included ITV in five traits (leaf area, specific leaf area, leaf water content, leaf toughness and chlorophyll content) to patterns based on species-mean trait values. Functional Β-diversity that included ITV increased with spatial extent and decreased with spatial grain, suggesting stronger environmental filtering within spatially extensive landscapes that contain populations locally adapted to different habitats. In contrast, functional ÎČ-diversity based on species-mean trait values increased with spatial extent but did not change with spatial grain, suggesting weaker environmental filtering among larger communities which each contain a variety of habitats and locally adapted populations. Synthesis. Although studies typically infer community assembly mechanisms from species-mean trait values, our study suggests that mean trait values may mask the strength of assembly mechanisms such as environmental filtering, especially in landscape-scale studies that encompass strong environmental gradients and locally adapted populations. Our study highlights the utility of integrating ITV into studies of functional Β-diversity to better understand the ecological conditions under which trait variation within and among species contributes most strongly to patterns of biodiversity across spatial scales

    Ontogenetic trait variation influences tree community assembly across environmental gradients

    Get PDF
    Intraspecific trait variation is hypothesized to influence the relative importance of community assembly mechanisms. However, few studies have explicitly considered how intraspecific trait variation among ontogenetic stages influences community assembly across environmental gradients. Because the relative importance of abiotic and biotic assembly mechanisms can differ among ontogenetic stages within and across environments, ontogenetic trait variation may have an important influence on patterns of functional diversity and inferred assembly mechanisms. We tested the hypothesis that variation in functional diversity across a topo-edaphic gradient differs among ontogenetic stages and that these patterns reflect a shift in the relative importance of different assembly mechanisms. In a temperate forest in the Missouri Ozarks, USA, we compared functional diversity of leaf size and specific leaf area (SLA) of 34 woody plant species at two ontogenetic stages (adults and saplings) to test predictions about how the relative importance of abiotic and biotic filtering changes among adult and sapling communities. Local communities of adults had lower mean SLA and lower functional dispersion of SLA than expected by chance, particularly at the resource-limited end of the topo-edaphic gradient, suggesting an important role for abiotic filtering among co-occurring adults. In contrast, local communities of saplings often had higher functional dispersion of leaf size and SLA than expected by chance regardless of their location along the topo-edaphic gradient, suggesting an important role for biotic filtering among co-occurring saplings. Moreover, the overall strength of trait-environment relationships varied between saplings and adults for both leaf traits, generally resulting in stronger environmental shifts in mean trait values and trait dispersion for adults relative to saplings. Our results illustrate how community assembly mechanisms may shift in their relative importance during ontogeny, leading to variable patterns of functional diversity across environmental gradients. Moreover, our results highlight the importance of integrating ontogeny, an important axis of intraspecific trait variability, into approaches that use plant functional traits to understand community assembly and species coexistence

    Fire and grazing in a mesic tallgrass prairie: impacts on plant species and functional traits

    Get PDF
    Fire is a globally distributed disturbance that impacts terrestrial ecosystems and has been proposed to be a global “herbivore.” Fire, like herbivory, is a top-down driver that converts organic materials into inorganic products, alters community structure, and acts as an evolutionary agent. Though grazing and fire may have some comparable effects in grasslands, they do not have similar impacts on species composition and community structure. However, the concept of fire as a global herbivore implies that fire and herbivory may have similar effects on plant functional traits. Using 22 years of data from a mesic, native tallgrass prairie with a long evolutionary history of fire and grazing, we tested if trait composition between grazed and burned grassland communities would converge, and if the degree of convergence depended on fire frequency. Additionally, we tested if eliminating fire from frequently burned grasslands would result in a state similar to unburned grasslands, and if adding fire into a previously unburned grassland would cause composition to become more similar to that of frequently burned grasslands. We found that grazing and burning once every four years showed the most convergence in traits, suggesting that these communities operate under similar deterministic assembly rules and that fire and herbivory are similar disturbances to grasslands at the trait-group level of organization. Three years after reversal of the fire treatment we found that fire reversal had different effects depending on treatment. The formerly unburned community that was then burned annually became more similar to the annually burned community in trait composition suggesting that function may be rapidly restored if fire is reintroduced. Conversely, after fire was removed from the annually burned community trait composition developed along a unique trajectory indicating hysteresis, or a time lag for structure and function to return following a change in this disturbance regime. We conclude that functional traits and species-based metrics should be considered when determining and evaluating goals for fire management in mesic grassland ecosystems

    Connectivity: insights from the U.S. Long Term Ecological Research Network

    Get PDF
    Ecosystems across the United States are changing in complex and surprising ways. Ongoing demand for critical ecosystem services requires an understanding of the populations and communities in these ecosystems in the future. This paper represents a synthesis effort of the U.S. National Science Foundation-funded Long-Term Ecological Research (LTER) network addressing the core research area of “populations and communities.” The objective of this effort was to show the importance of long-term data collection and experiments for addressing the hardest questions in scientific ecology that have significant implications for environmental policy and management. Each LTER site developed at least one compelling case study about what their site could look like in 50–100 yr as human and environmental drivers influencing specific ecosystems change. As the case studies were prepared, five themes emerged, and the studies were grouped into papers in this LTER Futures Special Feature addressing state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the “connectivity” theme and has examples from the Phoenix (urban), Niwot Ridge (alpine tundra), McMurdo Dry Valleys (polar desert), Plum Island (coastal), Santa Barbara Coastal (coastal), and Jornada (arid grassland and shrubland) sites. Connectivity has multiple dimensions, ranging from multi-scalar interactions in space to complex interactions over time that govern the transport of materials and the distribution and movement of organisms. The case studies presented here range widely, showing how land-use legacies interact with climate to alter the structure and function of arid ecosystems and flows of resources and organisms in Antarctic polar desert, alpine, urban, and coastal marine ecosystems. Long-term ecological research demonstrates that connectivity can, in some circumstances, sustain valuable ecosystem functions, such as the persistence of foundation species and their associated biodiversity or, it can be an agent of state change, as when it increases wind and water erosion. Increased connectivity due to warming can also lead to species range expansions or contractions and the introduction of undesirable species. Continued long-term studies are essential for addressing the complexities of connectivity. The diversity of ecosystems within the LTER network is a strong platform for these studies
    • 

    corecore